
1

Abstract--The growing importance of Web traffic on the Internet
makes it important that we have accurate traffic models in order
to plan and provision. In this paper we present a Web traffic
model designed to assist in the evaluation and engineering of
shared communications networks. Because the model is
behavioral we can extrapolate the model to assess the effect of
changes in protocols, the network or user behavior. The
increasing complexity of Web traffic has required that we base
our model on the notion of a Web-request, rather a Web page. A
Web-request results in the retrieval of information that might
consist of one or more Web pages. The parameters of our model
are derived from an extensive trace of Web traffic. Web-
requests are identified by analyzing not just the TCP header in
the trace but also the HTTP headers. The effect of Web caching
is incorporated into the model. The model is evaluated by
comparing independent statistics from the model and from the
trace. The reasons for differences between the model and the
traces are given.

I. INTRODUCTION

orld Wide Web (Web) traffic continues to increase and
is now estimated to be more than 70 percent of the total

traffic on the Internet [3]. Consequently, it is important that
we have an accurate model of this important source of traffic
so that we can simulate the performance of new system
designs, and experiment with alternative designs. With a
parametric model we can track the changes in parameters
over time and estimate the nature of future traffic.

Web traffic modeling is difficult for two reasons. Firstly,
many of the system components interact with one another.
Web browsers and Web servers from different vendors
behave differently and have different parameter values.
HyperText Transfer Protocol (HTTP) is changing and
different versions coexist and interact. While Transmission
Control Protocol (TCP) is relatively stable, different
implementations of TCP behave slightly differently
depending on the operating system.

Secondly, a Web interaction becomes more complex
because of the changing nature of the Web environment.
Browsing patterns of different users are diverse. A user may
purposely or accidentally open multiple browsers and
generate pages from these browsers at the same time. A user
may abandon the on-going page in the middle by moving to
another page or clicking the Back or Stop button. Current
publishing tools enable a browser to request multiple pages at
once (e.g. frames and Java-scripts). The frame allows authors
to present independently designed pages inside of sub-
windows as if they were a single page. Java-script cooperates
with HyperText Markup Language (HTML) code and enables
authors to present multiple pages in an independent window.

An implication of all this volatility is that there is no single
or quintessential template of a Web interaction. Thus, the

boundary between Web pages has become blurred,
particularly when a single request generates multiple pages,
and objects belonging to different pages are overlapped at the
time of downloading. A Web page has been a basic unit of
most past work [7][10]. A request by a user resulted in a
single page being fetched. A one-to-one correspondence
between a request and a page no longer exists. Hence, we
need to select a more general entity as a basic unit and we
adopt a Web-request. A Web-request is a page or a set of
pages that results from an action of a user. This results in a
model that more imitates closely user behavior.

Without having a method to accurately determine the
boundary of a Web-request from the trace of activity the
model will not be accurate. We determine the boundary of a
Web-request using HTTP header information as well as TCP
information. The HTTP header allows us to access higher-
level information such as a Uniform Resource Indicator
(URI), content type, content length and the status of a URI.
This additional information makes our method accurate.

The aim of our modeling is to produce a pattern of traffic
on a simulated network that closely resembles the pattern of
traffic on a real network that is supporting the same number
of users. By “closely resemble” we mean that we should be
able to use the model in the design of the network including
such parameters as buffer sizes and be able to determine
accurate measures of Web performance, such as average time
to receive a Web-request. This requires a trace that is large
enough to be statistically representative in all the parameters
that we attempt to capture in the model.

The model we present in this paper differs from previous
models in a number of ways. The basic unit of our model is
not a Web page but a Web-request. The boundary of a Web-
request is determined by HTTP header information as well
TCP header information. Our model simulates detailed
dynamics of TCP/IP as well as HTTP. Finally, the integrity of
the model is tested by comparing independent parameters of
the trace and the model.

II. RELATED WORK

In the past, several studies have attempted to characterize
Web traffic. Crovella and Bestavros [9] showed evidence of
self-similarity in Web traffic, based upon distributions of
object size and user viewing time and the effects of caching
and user preference.

In [7], Mah derived statistical properties of a set of Web
traffic parameters. The boundary of a Web page was
determined by searching for a gap in the communication
stream that was greater than a period of one second. This is a
less accurate method for determining Web page boundaries,
because they relied on just the TCP information in their

A Behavioral Model of Web Traffic

Hyoung-Kee Choi John O. Limb
School of Electrical and Computer Engineering College of Computing

Georgia Institute of Technology
[hkchoi | limb]@cc.gatech.edu

W

2

analysis of traces. This work did not present or test a Web
traffic model.

In [10], Badford and Crovella built a Web model called
"SURGE", based on the parameters: 1) Distribution of object
size on the server, 2) Distribution of the size of requested
objects, 3) Object popularity, 4) Number of in-line objects, 5)
Temporal locality, and 6) User viewing time. The model
showed self-similarity as evidenced by the variance-time plot.
The browser "Mosaic" was modified to record user activities
in the client. The instrumented browser was distributed to 37
clients in Boston University. This represents a relatively
small cross-section of users, and because the browser on the
client side is modified it is difficult to measure other user
communities. Further, the configured HTTP version was 0.9,
which was used before 1996. Because Mosaic is no longer
evolving, this work can not be extended to current versions of
HTTP.

Deng [8] measured Web traffic characteristics of
individual subscribers and proposed a two-state ON/OFF
model for the arrival process at the access link. The model
did not simulate the detailed interaction of Web traffic and
the accuracy of the model was not evaluated.

III. OVERVIEW

There are four different versions of HTTP currently
available. In what might be called “pure” Version 1.0 [1]
objects are downloaded back-to-back with each object
requiring one TCP connection. In Version 1.0 with multiple
connections, the browser opens multiple parallel connections
to download objects for the earliest display of the page. The
browser sets the limit on the number of multiple connections.
Objects beyond these limits are downloaded after completing
one of the outstanding connections. In Version 1.0 with
“Keep-alive”, multiple connections are possible, but a
connection is not closed immediately on the chance that a
new request for the connection will arrive before a time-out.
Version 1.1 [2] permits persistent connections and requests
are pipelined. The persistent connection is very similar to the
Keep-alive connection, the exception being for a proxy.

A typical Web page consists of a Hypertext document with
links to other objects that make up the whole page. An object
is an entity stored on a server as a file. There are two kinds of
objects, a main object and an in-line object. The file
containing an HTML document is referred to as a main object
and the objects linked from the Hypertext document are
referred to as in-line objects.

Main Object

In-line Object 1

In-line Object 2

In-line Object 3

HTTP ON HTTP OFF

Web-request Viewingtime

Figure 1: Overview of the basic model

The basic model of Web traffic is shown in Figure 1. A
new Web-request is immediately generated after expiration of
the viewing period. The model simulates an ON/OFF source

where the ON state represents the activity of a Web-request
and the OFF state represents a silent period after all objects in
a Web-request are retrieved. The duration of On state and Off
state correspond to On-time and viewing time, respectively.
Viewing time denotes any time that the browser is inactive.
Viewing time includes, for instance, the situation where the
browser is iconized while a user is working with another
application. On-time is the time taken to fetch all objects in a
Web-request. The ON state can be split into successive TCP
connections used to deliver objects. The parallel connections
for in-line objects are opened consecutively after the single
connection for the main object.

IV. MEASUREMENT AND ANALYSIS

A. Traffic Measurement and Parsing
We would like to measure the traffic close to a browser

source because we are modeling the traffic sent by, and to,
the browser. At the same time, we want a large cross-section
of traffic. We meet these objectives by recording a trace of
traffic on the backbone network of the Georgia Tech campus
(see Figure 2). The Georgia Tech campus network is
composed of two B-class IP addresses (130.207 and 128.61)
and a number of C-class IP addresses (about 170). We are
able to record a large cross-section of Web interaction from
across the campus. We further filter the traffic to gather only
those sessions that originate on the campus and terminate
elsewhere in the network. In this way we expect to obtain
model parameters that are not unduly affected by the behavior
of campus servers. Further, we exclude machine-generated
traffic such as Web-crawler traffic. Traffic from major search
engines is filtered out because it originates from outside of
the campus. The traffic from the campus search engines is not
recorded because it terminates inside the campus.

INTERNET

Web Server

ATM
Backbone

Router

Router

Client

Client

Client

Router

Client Client

Trace collecting
point

Figure 2: Perspective of the Georgia Tech campus network.

We use primarily a trace that was collected from 11 A.M.
to 12 P.M. on Wednesday October 7 1998 running on a Sun
Ultrasparc2 (180 MHz) workstation. More than 1900 clients
participated in Web browsing sessions producing about
24,000 Web-requests. The details of the trace are listed in
Table 1. We regularly record traces on the campus backbone
and this particular trace is typical. We do not claim that our
traffic source is representative of Web traffic in general.
However, we are able to develop and evaluate a methodology
that can be extended to other traffic sources.

3

HTTP Status CodesDate Number
of Clients 1xx 2xx 3xx 4xx 5xx

10/7/98 1934 197 138948 39903 1594 2488

MethodsNumber of Web-requests GET POST HEAD
24014 448810 5811 320

Table 1: Summary of the trace

We use two tools to collect and parse data, Tcpdump [4]
and Tcpshow [5]. The binary-mode option was set while
Tcpdump was running. Tcpdump recorded TCP/IP headers as
well as 300-byte TCP payloads. The 300 bytes of the TCP
payload are large enough to capture the HTTP request header
and the HTTP response header within the range of interest.
For our study, the HTTP header is important for obtaining
additional information about Web traffic. The HTTP header
information is used in the parsing and analysis phase to
separate Web-requests, to decide if the connection is Keep-
alive connection or Close connection and to check if the
object is cached.

Tcpshow interprets a binary-mode trace. From the binary-
mode trace, two new traces are created in off-line processing.
One contains the HTTP header information (HTTP trace).
The other contains the TCP header information (TCP trace).
The parameters are categorized into the HTTP layer and the
TCP layer depending upon associated traces. HTTP-layer
parameters are searched in the HTTP trace and TCP-layer
parameters are searched in the TCP trace.

The parser script, written in Practical Extraction and
Report Language (PERL), sorts out the HTTP trace by the
client IP addresses and checks if the client is inside the
campus. The sorted trace for a single client is separated into
distinct Web-requests using the technique discussed in
Section B. The start and end times of the Web-requests are
then recorded and used to parse parameters in the TCP trace.
Empirical distributions of HTTP-layer parameters are
obtained. In the TCP trace, the parser script parses TCP-layer
parameters based on the boundaries that were recorded when
HTTP-layer parameters were parsed.

Once empirical distributions of the individual parameters
are obtained, we compare each distribution with different
standard probability distributions and select the best fit. The
Quantile-Quantile plot (Q-Q plot) [11] is used to test the fit
of the data to the model. If the model fits the data perfectly
then the plotted points lie on a straight line. The best standard
probability distribution is determined to be the one that
minimizes the root-mean-square of the deviation from a
straight line. We select the best distribution from among
Weibull, Lognormal, Gamma, Chi-square, Pareto and
Exponential (Geometric) distributions.

B. Web-request
A Web-request is a page or a set of pages resulting from a

request by a user. By definition, (1) a Web-request is initiated
by a human action and (2) the first object in a Web-request is
an HTML document. Accurate identification of Web-requests
is essential for our model to be accurate. We determine the
Web-requests by setting up rules for a request. We apply

these rules to our parsing of the trace to identify Web-
requests. Our rules are:
− For simultaneously requested multiple pages by a user
from multiple browsers but from the same client, each request
represents a Web-request by definition (1). In this case, the
second or later Web-requests might include an object
belonging to a page of previous Web-requests. If the Web
page were a basic unit of the model, this inclusion would
skew the model parameters. It does not matter if the basic
unit is a Web-request because the boundary is determined by
whether or not we have a user request.
− If a single request generates multiple pages (e.g. frame
and Java-script), they belong to the same Web-request.
However if subsequent pages are retrieved by a user from
within the frame they would represent a complete Web-
request by definition (1). We do not consider an
automatically redirected page (HTTP status code 301 and
302) to be a Web-request.
− If a user clicks a hyperlink of a single object1 such as an
image (.jpg, .gif), a sound (.avi or .mp3) or a text document
(.txt, .ps or .pdf), these single objects do not represent a Web-
request by themselves (2). That's because the first object is
other than an HTML document. Instead, they are included in
the Web-request as in-line objects.

total htm / cgi asp sml stm other
28833 12340 4515 4425 1231 59 58 6205

Table 2: List of HTML document extensions.

In order to determine a boundary of a Web-request, we
take advantage of information in the HTTP header by
inspecting the extension of the requested objects, the MIME
type of the response or both. The extension indirectly implies
the contents of an object. Objects are mostly named
according to their type; for instance, most graphical images
are named “.gif” or “.jpg” and the most popular extension for
an HTML document is “.htm[l]”. This tendency is further
enforced if the page is designed by Web publishing utilities2.
Table 2 shows the list of extensions of HTML documents
found in our traces. Other in the last column of Table 2 is
mainly due to query requests whose URIs are WWW-URL-
encoded.

Extensions of objects do not always correlate with the
contents of objects. To prevent inadvertently missing a Web-
request by relying on the extension, the MIME type in the
HTTP response header is also checked. The MIME type
directly implies the type of an object. “text/html” is the
reserved MIME type for an HTML document by Internet
Assigned Number Authority (IANA).

In summary, a request becomes a Web-request:
− If it is used to request for an object whose extension
contains either “.htm”, “.asp” or “cgi”. A URI that finishes
with “/” implies “index.html” in the directory, also becomes a
Web-request.

1 It is difficult to distinguish a hyperlinked single object from a regular in-
line object because their trace records look the same. We could have used the
HTTP header information, “referal”, to distinguish these objects. Because
“referal” does not always guarantee to distinguish these two cases, we
decided not to use it.
2 Microsoft’s Frontpage 98, Adobe’s Pagemill and Netscape’s Composer.
They use ".htm” as the default extension.

4

− If it results in a response of MIME type “text/html” and
the HTTP status code 200 (OK).

Parameters Mean Median S.D. Best-fit
Request size 360.4 344 106.5 LN

Main 10710 6094 25032 LNObject
size In-line 7758 1931 126168 LN

Parsing time 0.13 0.06 0.187 G
Number of In-line objects 5.55 2 11.4 G
In-line Inter-Arrival time 0.86 0.17 2.15 G

Viewing (OFF) time 39.5 11.7 92.6 W
Non-

cached 12.6 5 21.6 LNNumber of
Web-requests Cached 1.7 1 1.7 GM

Table 3: Summary statistics for HTTP parameters
(LN=Lognormal, G=Gamma, W=Weibull and GM=Geometric)

V. MODEL

From our traces and their analysis we have derived the
parameters of our model. In the following we indicate a
parameter by bold face.

A. HTTP Model
Statistics of HTTP parameters are shown in Table 3.

Number of in-line objects is the number of in-line objects in a
Web-request. The in-line objects that we count are only those
which need to be downloaded. A requested object does not
need to be downloaded if it is found in the cache with valid
time-stamps. Hence number of in-line objects is always less
than or equal to the total number of objects. The mean
number of in-line objects is 5.55, almost three times larger than
the mean observed in [7]. This may be explained by the
following:
− The number of multimedia objects in a page is increasing
with time, as pages become more complex.
− The hit ratio of the local cache has dropped. Because the
number of Web servers has increased since the work [7] was
done, the number of Web servers that a user accesses has also
increased, so that a user’s access pattern becomes less
predictable.
− The technique that was used to separate pages in [7]
underestimated the parameter as discussed in Section II.

Viewing time is the inactive interval between Web-requests.
The viewing time parameter measured in previous work [7],
by definition, was always greater than one second. However
our histogram of viewing time in Figure 4.b shows a large
number of values less than one second. These samples may
be attributed to situations where a user abandons the Web-
request before the browser has finished fetching all of its
objects and where Web-requests are requested from multiple
browsers. The distribution of viewing time is fitted well by a
heavy-tailed Weibull distribution (see Figure 4.a), which is
consistent with previous work [7][8][9].

In-line inter-arrival time is the time between the opening of
one in-line object and the next. It measures the starting time
between subsequent in-line objects. The inter-arrival time, up
to the maximum permitted number of simultaneous objects, is
just a few tens of milli seconds. Further in-lines are sent only
after outstanding objects complete, so that inter-arrival times

may be as large as a few seconds or more. The distribution of
in-line inter-arrival time matches a Gamma distribution.

Parsing time is the time spent parsing the HTML code in
order to determine the layout of a page after fetching the main
object. This quantity depends on the client machine. It is well
matched by a Gamma distribution.

Both distributions of main-object size (see Figure 5.a) and
in-line-object size are well fitted by a Lognormal distribution.
The mean of main-object size is larger than in-line-object size
and the variance of in-line-object size is greater than main-
object size. The HTTP object size is easily obtained from the
content-length field in the HTTP response header. The
histogram of main-object size is shown in Figure 5.b.

Request size is the size of the HTTP request header. It is
best fitted by a Lognormal distribution.

B. Web Caching Model
In HTTP, cacheable objects are stored with a tag

containing the expiration-time; after this time an object is no
longer valid [1][2]. The expiration-time is estimated from the
last-modified field in the HTTP response header. The longer
the time since the object was modified, the longer the
expiration-time. Before HTTP sends a request, it checks the
local cache. If the requested object is found in a local cache,
HTTP checks the expiration-time. If the object is valid, HTTP
reads the object from the cache instead of retrieving it from a
remote server. If not, HTTP sends a conditional request with
the expiration-time tag in the if-modified-since field. The
server compares the tag with the time the object was
modified. The server responds with the HTTP status code 304
if it is still valid. If not, the server downloads the object.

We model two types of events. One is when the
expiration-timer of the cached object is expired and the server
proves the validation of the cache. The other is when the
cached object is confirmed as expired by the server or when
the object is not cached; in both cases an object is
downloaded from the server. We do not model the case where
the object in the cache is valid because such cases do not
generate network traffic.

We can easily determine a cached object from the HTTP
status code in the HTTP trace. It is a cached object if the
HTTP status code is 304. In a Web-request, some objects can
be cached and some objects are not. The Web-request is
defined to be a cached Web-request if more than a half of the
objects in the Web-request are cached. The reasoning is that
two Web-requests share an object with low probability.
Further, if the first object in a Web-request is cached, all
following objects tend to be cached. Figure 6 shows the
histogram of the fraction of non-cached objects in a Web-
request. Two peaks at zero and one indicate whole objects are
either cached or non-cached. Based upon the definition of a
cached Web-request, we measure number of consecutive
cached Web-requests and number of consecutive non-cached
Web-requests from the trace.

Our Web caching model is a two-state renewal process
where a Web-request is an event. A renewal process remains
in one state for a number of self-returning events and moves
to next states at the time of a renewal. This model has two
states; one state represents a Web-request that is locally
cached (Cached state) and the other represents a normal Web-

5

request (Non-cached state). We have extracted the
distributions of the number of self-returning events of the two
states; number of consecutive cached Web-requests and number
of consecutive non-cached Web-requests. The model remains
in the Cached (or Non-cached) state until the number of Web-
requests generated in this state is the same as the number of
Web-requests obtained from the distribution. Then, the model
switches to the Non-cached (or Cached) state with probability
one. Number of consecutive cached Web-requests is best fitted
by a Geometric distribution and number of consecutive non-
cached Web-requests is best fitted by a Lognormal
distribution.

C. TCP model
In TCP, segments are transmitted in a burst until the TCP

window is closed. The interval between two successive bursts
is called a stall. We use a TCP model in which the number of
segments transmitted and the time spent in a stall are chosen
from empirically derived distributions. Our TCP model is
described in more detail elsewhere [15]
D. Correlation

Parameters in our model are assumed to be uncorrelated
with themselves as well as with one another so that the
generation of one parameter is independent of the generation
of other parameters. In order to test the accuracy of this
assumption we calculated auto and cross correlation functions
of our parameters. We selected only client sessions which had
more that 40 samples of Web-requests. We calculated the
correlation function up to a lag of 20 from these samples. We
find that, generally, correlations are very low. An exception is
the significant amount of auto-correlation in request size (see
Figure 7) where the average auto-correlation at lag one is
0.59. Note that request size is far smaller than either main-
object size and in-line-object size. Consequently we would
expect the auto-correlation of request size not to affect
significantly the accuracy of the model. Table 4 shows the
average auto-correlations at lag one.

Request Size 0.59 Number of In-line Object 0.18
Viewing Time 0.23 In-line Inter-arrival Time 0.05
Parsing Time 0.07 In-line Object Size 0.13
Main-object Size 0.16

Table 4: Auto-correlations at lag one

Start Main Object Parsing Time Number of
Inline (n)

Inline Inter-
Arrival
Time(i)

Inline Object
(i)

Viewing TimeEnd

NO
i = n

YES

At the end of
In-line

objects

Figure 3: State transition diagram for Web traffic generation

VI. TRAFFIC GENERATION

The traffic model simulates an ON/OFF source. The state
transition diagram shown in Figure 3 describes the traffic

generation process. At the beginning, the traffic
corresponding to the main object is generated and is delayed
for the period of parsing time. During this period a Web
browser fetches the main object and parses number of in-line
objects as well as the page layout. The model, however,
generates number of in-line objects from the best-fit
distribution and waits for the expiration of parsing time.

After the start of one in-line object there is a delay to the
start of the next. The first in-line object starts after expiration
of parsing time. The second in-line object does not wait until
the first in-line object finishes but starts one in-line inter-arrival
time after the start of the first. Subsequent in-line objects start
until the number of in-lines started equals number of in-line
objects. The number of outstanding connections in the model
is not restricted to four or six which is the case of Netscape
and an Internet Explorer. Instead we model the number of
outstanding connections by the distributions that are collected
from the trace. In the model, depending upon in-line object
size and in-line inter-arrival time, the number of outstanding
connections will vary. Frequently, in-line inter-arrival time is
less than the duration of the connection, which is mainly
determined by in-line object size. Hence, the model indirectly
simulates the parallel downloading of in-line objects. After all
objects are transmitted the model is silent for viewing time.
After the expiration of viewing time, the model starts to
generate a new Web-request.

The Web caching model influences the final model
through main object size and in-line-object size. The main
object is more frequently changed than the in-line object
because modifying a Web page leads to modifying the main
object. For example, famous news sites modify a text article
and a few pictures associated with the article but leave a
number of icons and commercial banners unchanged.
Because the expiration-time of main objects is relatively short
due to frequent changes, the main object is fetched most of
time. The HTTP object size becomes zero except for the main
object while in the cached state. While in the non-cached
state, the sizes of both HTTP object types are generated from
the distribution.

VII. VALIDATION OF THE MODEL

To validate the model we need measurements from the
trace that are independent of any measurements used in
constructing the model. Two such measurements are on-time
and the variation of the required bandwidth in time.

A. On-time
On-time is not directly used in constructing our model. On-

time is the function of a number of parameters; number of in-
line objects, in-line inter-arrival time, main-object size, in-line-
object size and stall time. These parameters interact with one
another and combine to determine on-time in the model. Thus,
it may be used to check the model by comparing with directly
measured on-time from the trace. If there is any significant
error in our measurement of parameters, the way we combine
measurements or the completeness of our model we would
expect differences between the model and the trace.

On-time from both the model and the trace match a Weibull
distribution with the shape parameters 0.77 and 0.68,

6

respectively. The mean and standard deviation of the traces
are 11.34 and 23.85 and those of the model are 10.49 and
20.33. The cumulative density function (CDF) comparison is
shown in Figure 8.

B. Bandwidth Required
The variation of the required bandwidth with time is

another independent check. To implement this test, we have
recorded the sum of bytes in ten milli second granularity from
the trace and the model. To obtain the value at the next level
of the granularity we summed ten consecutive samples from
the previous granularity and calculated the arithmetic mean of
the samples. We measured four different granularities up to a
ten second granularity and plotted 200 samples from both the
trace and the model.

In this section, we are more interested in the largest
granularity of 10 in order to compare the overall behavior of
the trace and the model. The means of the required bandwidth
of the model and the trace closely match as shown in Figure
9; the mean of the trace is 4656 kbytes and that of the model
is 4699 kbytes.

C. Self-similarity
A process X is called self-similar if the aggregate process

of X has the same auto-correlation function as X. The degree
of the self-similarity is expressed using the Hurst parameter.
The Hurst parameter is always less than 1.0 and greater than
0.5. The closer the Hurst parameter is to 1, the more self-
similar the process. Further discussion about self-similarity
can be found in [12][14].

We have tested the self-similarity of the model using two
methods: variance-time plot and R/S (Rescaled Adjust) plot.
We have also tested the burstiness of the traffic using four
different time scales. For these three tests, we have used the
same data described in Section B.

The two variance-time plots shown in Figures 10.a and
10.b exhibit the level of the self-similarity of the model and
the trace. The Hurst parameters calculated are 0.805 for the
trace and 0.78 for the model.

The R/S plot shows that the asymptotic slope is different
from 0.5 and 1.0 (see Figures 11.a and 11.b). The estimated
Hurst parameters are 0.8 for the trace and 0.77 for the model.
The group of values near one on the x-axis fall below a slope
less than half. That is mainly due to the small number of
samples. The result of the rest test can be found in [15].

VIII. DISCUSSIONS

We collected data from Keep-alive and persistent
connections. About 76 percent of connections in the trace are
Keep-alive enabled connections. About 40 percent of these
connections actually use Keep-alive and the rest are closed
either after the expiration of the Keep-alive timer, because the
user switched to another Web server, or because the server
closed the connection due to the nature of a page. Most
servers have a short period for the Keep-alive timer due to
limited resources at the server.

IX. CONCLUSIONS

Web traffic has more structure to it than most types of
Internet traffic. Further, the characteristics of the traffic
change as browsers and servers evolve, as the behavior of
users change, as the speed of the network increases and as the
protocols change. This makes Web traffic modeling a
challenge.

We have presented a model of Web traffic that attempts to
capture the major aspects of the traffic. This has required us
to extend the models used in previous work and to correct
shortcomings of previous models. For example, the presence
of a frame has required us to redefine the basic unit of the
model.

From the extensive traces we have gathered of Web traffic
we have extracted the distributions of the parameters used to
represent the model. From the model, we have generated
synthetic traffic and can now compare it with the trace data.
We have shown that independent variables from the trace and
from the model agree well. We believe that the model is
accurate enough to predict the behavior of traffic as
parameters change (such as the speed of a line or the size of
Web-requests), however, this remains to be proved.

X. REFERENCES

[1] T. Berners-Lee, R. Fielding, and H. Frustuk. Hypertext
Transfer Protocol – HTTP/1.0. Internet RFC 1945, May 1996.
[2] R. Fielding, J. Getty, J. Mogul, H. Frystyk, and T. Berners-Lee.
Hypertext Transfer Protocol – HTTP/1.1. Internet RFC 2068, Jul
1997.
[3] K. Thompson, G. J. Miller, and R. Wilder. Wide-Area Internet
Traffic Patterns and Characteristics (Extended Version). IEEE
Network Magazine, Nov 1997.
[4] V. Jacobson, C. Leres, and S. McCanne. Tcpdump manual and
software.
[5] M. Ryan. Tcpshow version 1.73 available at
http://http.cs.berkeley.edu/~daw/mike/, Nov, 1996.
[6] H. F. Neilson, et al. Network Performance Effects of
HTTP/1.1, CSS1, and PNG. In Proceedings of SIGCOMM ’97,
Cannes, French Riviera, France, Sep 1997.
[7] B. Mah. An empirical model of HTTP network traffic. In
Proceedings of INFOCOM ’97, Kobe, Japan, Apr 1997.
[8] S. Deng. Empirical model of WWW document arrivals at
access link. In Proceedings of ICC ’96, Jun 1996.
[9] M. Crovella and A. Bestavros. Self-Similarity in World Wide
Web traffic, Evidence and Possible cause. In Proceeding of ACM
SIGMETRICS ’96, Philadelphia, PA, Apr, 1996.
[10] P. Badford and M. Crovella. Generating representative Web
workloads for network and server performance evaluation. In
Proceedings of ACM SIGMETRICS ’98.
[11] R. B. D’Agostino and M. A. Stephens. Goodness-of-Fit
Techniques, Marcel Dekker, Inc., 1986.
[12] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson.
On the self-similar nature of Ethernet traffic (extended version).
IEEE/ACM Transaction on Networking, pages 1-15, 1994.
[13] C. A. Cunha, A. Bestavros, and M. Crovella. Characteristics of
WWW client-based trace. Technical Report TR-95-010, Boston
University, Dept. of Computer science, Apr 1995.
[14] J. Beran. Statistics for long-memory processes. Monographs on
Statistics and Applied Probability. Chapman and Hall, New York,
NY, 1994.
[15] Hyoung-Kee Choi and John O. Limb. A behavioral model of
Web traffic (Extended Version) available at
http://users.ece.gatech.edu/~hkchoi/model.pdf.

Viewing Time (Weibull)

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Trace
Model

0 50 100 150 200 250 300

0
50

0
10

00
20

00
30

00

Viewing Time (sec)

fr
eq

ue
nc

y
->

mean = 39.45
median = 11.71
S.D. = 92.57

Figure 4.a: CDF comparison of viewing time
with a Weibull distribution

Figure 4.b: Histogram of viewing time. The
peak near 300 sec are due to periodically re-
freshed pages.

Main Object Size (Lognormal)

0 20000 40000 60000 80000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Trace
Model

0 10000 20000 30000 40000 50000 60000

0
10

0
20

0
30

0
40

0

Main Object Size (byte)

fr
eq

ue
nc

y
->

mean = 10709.79
median = 6094
S.D. = 25032.09

Figure 5.a: CDF comparison of main-object
size with a Lognormal distribution

Figure 5.b: Histogram of main-object size

0.0 0.2 0.4 0.6 0.8 1.0

0
50

00
10

00
0

15
00

0
20

00
0

Fraction of non-cached (200) objects lag (Request size)

A
ut

o-
co

rr
el

at
io

n

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 6: Histogram of the fraction of non-
cached objects. A sample is calculated by divid-
ing the number of non-cached objects by num-
ber of in-line objects in a Web-request.

Figure 7: Auto-correlation function of request
size. Six di�erent samples are plotted. The
mean of auto-correlation at lag one is 0.59.

7

-1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Model
Trace

On-time (log scale)

-1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sec

K
by

te
s

T
ra

ns
m

itt
ed

0 500 1000 1500 2000

20
00

40
00

60
00

80
00

MODEL
TRACE

Figure 8: CDF comparison of On-times - On-
time of Trace and On-time of Model. X-axis is
log-scaled

Figure 9: The variation of the demanded band-
width in time. Two parallel lines indicate the
mean of samples.

log(# of sample(m))

lo
g(

va
r(

m
))

0 1 2 3 4 5

4.
5

5.
0

5.
5

6.
0

6.
5 Slope => -0.44

log(# of sample(m))

lo
g(

va
r(

m
))

0 1 2 3 4 5

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

Slope => -0.39

Figure 10.a: Variance-time plot of the model.
The Hurst parameter is 0.78. The slope of lower
line is -1.

Figure 10.b: Variance-time plot of the trace.
The Hurst parameter is 0.805.

log(# of sample(m))

lo
g(

R
(m

)
/ S

(m
)

1 2 3 4 5

1
2

3
4

log(# of sample(m))

lo
g(

R
(m

)
/ S

(m
)

1 2 3 4 5

1
2

3
4

Figure 11.a: R/S plot of the model. The Hurst
parameter is 0.77. The slopes of two straight
lines are 1 and 0.5, respectively.

Figure 11.b R/S plot of the trace. The Hurst
parameter is 0.8.

8

