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A new fast algorithm for the computation of the normalized cross-correlation (NCC) is
presented. For a search window of size M and a template of size N , our fast NCC
requires only approximately 3N ·(M −N +1) additions/subtractions without multiplications.
Numerical results with 100,000 test signals show that the use of the fast NCC instead of
the traditional approaches for the determination of the degree of similarity between a test
signal and a reference signal (template) brings about a significant improvement in terms of
false negative rate, identification rate and computational cost without a significant increase
in false positive rate, especially when signal to noise ratio (SNR) is higher than 4 dB.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Template matching by normalized correlations has been commonly used as a metric to evaluate the degree of similarity
between two signals, and can be traced back to very early research in pattern recognition [1]. One-dimensional correlation-
based methods have been used extensively for many applications such as radar target identification [2–5], Electrocardiogram
(ECG) signal processing [6], audio/speech signal processing [7–9], database search [10], watermarking electronic text docu-
ments [11,12], etc. In these kinds of applications, usually the signal profiles exist as one-dimensional inherently or even are
transformed to one-dimension domain for the facilities of characteristic computations like cross-correlation. Unfortunately
the normalized form of correlation preferred in template matching does not have a correspondingly simple and efficient
frequency domain expression. For this reason normalized cross-correlation (NCC) has been computed in the spatial domain
[2–5]. The main advantage of the NCC over the cross-correlation is that it is less sensitive to linear changes in the amplitude
of signal in the two compared signals. Furthermore, the NCC is confined in the range between −1 and 1, and the setting
of detection threshold value is much easier than the cross-correlation [14]. The normalized cross-correlation is a reasonable
choice in many cases. Nevertheless, it is computationally expensive and its computation time increases dramatically as the
size of the template gets larger. Therefore a fast correlation algorithm that requires fewer calculations than the basic version
is of interest. The emphasis and contribution of this work is to propose a new fast NCC algorithm only using additions, of
which benefit is more obvious when implemented in hardware for real-time applications. Up to now there has not been
any study on NCC algorithm only using additions.

2. Fast NCC algorithm

The problem treated in this paper is to determine the position of a given pattern t in a one-dimensional signal f .
A common way to calculate the position of the pattern t in the signal f is to evaluate the normalized cross-correlation
value (coefficient) at each point (u), which has been shifted by u steps in the x direction. The maximum values or peaks
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of the computed correlation values indicate the best matches between the template (pattern) t and the signal f . The
normalized cross-correlation used for finding matches of a template t(x) of size N in a signal f (x) of size M is defined as

γu( f , t) =
∑

x[ fu(x) − f u] · [t(x − u) − t]√∑
x[ fu(x) − f u]2 · ∑x[t(x − u) − t]2

, (1)

where the summations are over all template coordinates, fu(x) is f (x) in the region under the template (positioned at the
place u), t is the mean of the template and f u is the mean of fu(x).

Unfortunately, the calculation of (1) is computationally too expensive. The number of computations required to calculate
the NCC coefficients is 2N · (M − N + 1) multiplications and 3N · (M − N + 1) additions/subtractions.

2.1. Derivation of the fast NCC coefficient

Let us assume that:

fu0(x) = α · t(x − u0) for a given u0, (2)

where α is a positive constant that represents a scaling factor and the lower suffix letter u0 denotes a location in which the
NCC coefficient is 1. Under the assumption of (2), we can rewrite (1) as (3):

γu0( f , t) =
∑

x[ fu0(x) − f u0 ] · [t(x − u0) − t]√∑
x[ fu0(x) − f u0 ]2 · ∑x[t(x − u0) − t]2

=
∑

x[ fu0(x) − f u0 ]2∑
x[ fu0(x) − f u0 ]2

(
fu0(x) = α · t(x − u0)

)

= 1

N

∑
x

[ fu0(x) − f u0 ]2

[ fu0(x) − f u0 ]2

= 1

N

∑
x

[ fu0(x) − f u0 ] · [ fu0(x) − f u0 ]
| fu0(x) − f u0 | · | fu0(x) − f u0 |

. (3)

As long as γu0(·) = 1, it is possible to replace f u0 with any real value and then (3) gives numerically satisfactory results. In
this paper, we chose the values f +

u0
(x) and f −

u0
(x) such that f +

u0
(x) � fu0(x) and f −

u0
(x) � fu0(x). Therefore,

γu0( f , t) = 1

N

∑
x

[ f +
u0

(x) − fu0(x)] · [ fu0(x) − f −
u0

(x)]
| f +

u0(x) − fu0(x)| · | fu0(x) − f −
u0(x)| . (4)

For a given SNR (Signal to Noise Ratio), we can rewrite the assumption (2) as

∣∣ fu0(x) − α · t(x − u0)
∣∣ � αη, (5)

where the value η was chosen as a positive real number such that the signal fu0(x) is bounded between f −
u (x) = α · [t(x −

u) − η] and f +
u (x) = α · [t(x − u) + η].

Note that the worse the SNR is, the larger the value η will be. The SNR is the power ratio between a template t(x) and
the background noise n(x):

SNR = 10 log10

∑
x |t(x)|2∑
x |n(x)|2 . (6)

From (6), we obtain

∑
x

∣∣n(x)
∣∣2 ∝ 1

10(SNR/10)
. (7)

Here, assuming that the amplitude of n(x) is approximately uniform with the value η over the region under the template
gives

∑
x

∣∣n(x)
∣∣2 ≈ N · η2. (8)

By substituting (8) into (7), we can approximate the value η as
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Table 1
The values of parameter k as a function of SNR.

SNR (dB) −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

k 0.6 0.7 0.73 0.75 0.78 0.80 0.83 0.87 0.89 0.91 0.93 0.95 0.97 0.98

η ≈ λ ·
√

1

N · 10(SNR/10)
, (9)

where the parameter λ is a proportional constant with a positive value.
If the formula (4) is used even when the assumption (2) may not be valid or when u �= u0, the result is an approximation

to the NCC coefficient. We will refer to this approximation as the fast NCC coefficient denoted as Λu(·), which is given by

Λu( f , t) � 1

N

∑
x

F +
u (x) · F −

u (x) for a given shift u, where F +
u (x) = f +

u (x) − fu(x)

| f +
u (x) − fu(x)| , F −

u (x) = fu(x) − f −
u (x)

| fu(x) − f −
u (x)| .

(10)

The values F +
u (x) and F −

u (x) are given as follows:

F +
u (x) =

{+1 if fu(x) − α · t(x − u) < α · η,

−1 otherwise,
(11)

F −
u (x) =

{+1 if α · t(x − u) − fu(x) < α · η,

−1 otherwise.
(12)

Here, we can have the observations that if the signal fu(x) is bounded between f −
u (x) and f +

u (x), then the values F +
u (x)

and F −
u (x) will be both 1, resulting in Λu(·) = 1.

Notice that the larger the proportional constant λ in (9), the larger the value η will be, and then it will lead to more
robust F +

u (x) and F −
u (x) to noise. However, it may cause more false alarms. Therefore, there is an inevitable trade-off

between robustness to noise and performance in choosing λ. Thus, the proportional constant λ were experimentally chosen
to satisfy the rate of overall identification as high as possible with minimum number of false alarms for the given SNR and
finally set to 3.2.

2.2. Proposed fast NCC algorithm

We assume that (i) the template t is pre-normalized to be between 0 and 1, (ii) the SNR is known a priori, (iii) the
scaling factor α is taken in the range of [0.1,10]. Given two signals, f (x) and t(x), the steps of the proposed fast NCC
algorithm include the following:

Step 1: Estimate the scaling factor α.
We used the ratio of the average between fu(x) and t(x), as the estimator α̂(u) of the original scaling factor α:

α̂(u) = k · δ f (u)

δt
, (13)

where δ f (u) = ∑u+N−1
x=u f (x), δt = ∑N−1

x=0 t(x) and the parameter k is a real number.
After testing, we chose the value of k that gave the best estimation of the scaling factor for a given SNR.
Table 1 shows the experimental values of k under different SNR for estimating the best scaling factor α. Notice that the

better the SNR is, the closer to 1 the value of k is.
Also, the value δ f (u) at each shifting instant is based on that at the previous instant, u. Therefore,

δ f (u + 1) = δ f (u) + f (u + N) − f (u). (14)

Thus the computation for δ f (u) during entire matching process involves approximately 2M − N additions.

Step 2: Next, compute the values F +
u (x) and F −

u (x) by using α̂(u) (= k · δ f (u)/δt) obtained from Step 1.
The inequality condition of (11) can be rearranged as follows:

fu(x) − α̂(u) · t(x − u) < α̂(u) · η (15)

which reduces to

(
fu(x) − �u(x)

)
< θu, (16)

where �u(x) = δ f (u) · k · t(x − u)/δt and θu = δ f (u) · k · η/δt .
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Table 2
Number of computations for calculating Λu(·).

Addition/subtraction Multiplication

Step 1 2M − N 0 (14)
Step 2 2N · (M − N + 1) 0 (18)
Step 3* N · (M − N + 1) 0 (10)

* The division for the term (1/N) in (10) is not included if Λu( f , ti) � N · THΛ
roi instead of (23) is used. “Logic

AND” operations performed in (10) are not included due to their triviality. Here, it is assumed that an AND-
accumulator circuit for these logic computations is built.

Table 3
The comparison of arithmetic operations among the proposed method and the traditional normalized correlation techniques.

Addition/subtraction Multiplication

Numerator Denominator Numerator Denominator

Direct NCC N · (M − N + 1) 2N · (M − N + 1) N · (M − N + 1) N · (M − N + 1)

FFT 9M log2 M 2N · (M − N + 1) 6M log2 M N · (M − N + 1)

(FFT) (Direct) (FFT) (Direct)
Lewis* 9M log2 M 3 · (M − N + 1) 6M log2 M 0

(FFT) (Lewis) (FFT) (Lewis)
Walsh Transforms (N − 1) · (M − N + 1) N · (M − N + 1)

Fast NCC 3N · (M − N) + 2M − N 0

* The extra computations required to set up the sum tables are not included.

Similarly, the inequality condition of (12) is

(
fu(x) − �u(x)

)
> −θu . (17)

Here, the values k · t(x − u)/δt and k · η/δt can be precomputed, and �u(x) and θu can be obtained from a precomputed
look-up table. That is, �u(x) is obtained from the table indexed by δ f (u) and k · t(x − u)/δt while θu by δ f (u) and k · η/δt .

In practice, the amount of memory required for storing such look-up tables is less than 110 Kbytes when it is assumed
that the scaling factor α̂(u) is defined as values in the range [0.1,10] with a precision of 0.1 and the template t(x − u) in
the range [0,1] with a precision of 0.001.

Finally, we have from (16) and (17)

F +
u (x) · F −

u (x) =
{+1 if | fu(x) − �u(x)| < θu,

−1 otherwise.
(18)

Step 3: Finally, compute the fast NCC coefficient Λu(·) of (10).
Given F +

u (x) · F −
u (x), the computation (10) for Λu(·) during entire matching process involves approximately N ·(M −N +1)

additions. Notice that the division for the term (1/N) in (10) is not included if Λu( f , ti) � N · THΛ
roi instead of (23) in

Section 4.3 is used.

Repeat the above Steps 1–3 with u = u + 1 until u reaches (M − N).

3. Complexity analysis

For a signal of size M and a template of size N the approximate number of computations required at each step in
Section 2 is given in Table 2.

The proposed method belongs to the class of exhaustive search algorithms. Therefore, in order to evaluate its performance
gain, we compare the fast NCC algorithm to the traditional normalized correlation techniques such as the direct NCC, cross-
correlation using Fourier transform, Lewis algorithm [15], fast block matching using Walsh Transforms [16], fast template-
matching algorithm using adaptive skipping [17–19].

Table 3 shows the comparison of arithmetic operations between the proposed method and these traditional normalized
correlation techniques. For a search window of size M and a feature of size N the fast NCC algorithm requires approximately
3N · (M − N + 1) additions/subtractions without multiplications, which opens up many new time-critical applications. In
contrast to this, the direct NCC requires 2N · (M − N + 1) multiplications and 3N · (M − N + 1) additions/subtractions.
Cross-correlation using FFT is obtained by calculating only the numerator of (1) in the frequency domain, resulting in being
not normalized. In addition, the complexity of the FFT depends on the size of the template t(x) and the signal f (x) [20].
When M is much larger than N , it may even exceed the number of computations required by the direct method. Lewis’
sum-table approach can be used to efficiently calculate the denominator of (1). However, it cannot be applied to compute
the numerator of (1), and thus the number of computations required to calculate (1) is still comparatively high even if
the computation of the numerator of (1) is done in the frequency range with FFT algorithm. Furthermore, Lewis’ algorithm
requires approximately 3 · M operations for the construction of the sum tables [15]. Fast block matching with normalized
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cross-correlation using Walsh Transforms [16] is faster than the direct NCC, but requires more operations than those needed
by the fast NCC algorithm.

The fast template-matching algorithms using adaptive skipping method [17–19] skip unnecessary calculations for achiev-
ing efficient search. However, these approaches can make lots of false negatives under noisy environment because of the
skipping process and requires multiplications during the computation of the NCC as well.

To meet real-time requirements for time-critical applications such as surveillance radar system, collision avoidance and
cruise missile [21,22] it is crucial to use a hardware based template matching [23–25].

From a hardware viewpoint, the addition operation needs much less than a tenth of hardware complexity and processing
time compared to a multiplication circuit [26]. Therefore, as the bit-widths of signal get larger, the computational advantages
of the fast NCC over the traditional ones are more obvious.

4. Simulation results

A simulation was conducted to test the fast NCC algorithm proposed in this paper. The database was structured with
1000 templates denoted by ti(x) where the indexes i = {1,2, . . . ,1000}. These templates were used to examine the perfor-
mance of the presented approach.

4.1. Generating the template ti(x) and the signal f i(x)

J. Ben-Aire and K.R. Rao proposed a method for one-dimensional signal decomposition by Gaussian basis functions and
showed that the one-dimensional signal can be approximated by a set of Gaussian basis functions [13]. In this paper, to
generate various templates, a Gaussian pulse was considered:

gn(x) = An · e−(x/σn)2
for 0 � x � N − 1, (19)

where An is the maximum amplitude of the pulse and σn is the pulse half-duration at the 1/e point.
The parameter An between 0 and 1 was chosen at random, while the σn was chosen arbitrary in (0.001N, N/32). By

choosing random values, the shape and amplitude of the Gaussian pulse gn(x) generated could be randomly altered. The
template ti(x) can be obtained by superposition of P Gaussian pulses as follows:

Initialization: ti(x) = 0
For n = 1 : 1 : P

temp = ti(x) + gn(x − τ )

ti(x) = temp
max(temp)

End

(20)

where the τ is a random displacement which was chosen between 0 and N − 1 with Gaussian distribution of mean N/2
and variance (N/8)2, and the arbitrary P was chosen in (0.2N, N).

By these random parameters the shape and amplitude of the templates (ti(x)) are various enough to test the performance
of the algorithm presented in this paper. However, the template t j(x) such that γu(ti, t j | i �= j) � THγ

roi was excluded from
consideration, where the value THγ

roi is a threshold for identification. Some examples of these templates with various profiles
are shown in the left column in Fig. 1. Also, the corresponding signals f i(x) to the templates are shown in the right column
in the same row in Fig. 1.

The signals f i(x) with various SNR from −3 to 10 dB were generated from the templates as follows:

f i(x) = α · ti(x) + AWGN, (21)

where f i(x) was labeled with the corresponding template index i for verification, the scaling factor α was taken in the
range of [0.1,10] with increment of 0.1.

The signal f i(x) for each database entry to check the correlation performance was created, and thus there are total of
100,000 f i(x) for a given SNR. A test signal f (x) of size M can be generated by AWGN of size M in (21), where M > N is
assumed.

In this simulation, the size N between 70 and 90 was chosen at random, while M was set to 4 · N . Fig. 2 shows a typical
test signal f (x) which includes f i(x) together with background noise depending on SNR.

4.2. The choice of THroi

Fig. 3 shows γu( f i, ti) and Λu( f i, ti), averaged over i as a function of SNR, in the matching position. It can be seen that
the normalized correlation coefficient γu( f i, ti) decreases as the SNR (Signal to Noise Ratio) decreases. This figure provides
information on how to choose the suitable threshold THroi , which is given by

THγ
roi = γu( f i, ti) − σγ for the direct NCC,

THΛ = Λu( f i, ti) − σΛ for the fast NCC, (22)
roi
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Fig. 1. Some examples of ti(x) and the corresponding f i(x) when α = 1. Y -axis indicates ti(x) (left column) and the corresponding f i(x) (right column).

Fig. 2. An example of a test signal f (x) which includes f i(x) together with background noise. (a) A template ti(x) and (b) the corresponding test signal
f (x) (3 dB AWGN).
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Fig. 3. Normalized cross-correlation coefficient versus signal to noise ratio.

where (·) and σ(·) are the mean and standard deviation of the normalized correlation coefficient between ti(x) and f i(x),
and the upper suffix letter “γ ” denotes the threshold THroi for the direct NCC while “Λ” denotes the threshold for the fast
NCC.

The lower the SNR is, the lower THγ
roi is. However, THΛ

roi is almost constant for various SNR levels. This is because the
value Λu( f i, ti) under the optimal value η for the given SNR is evaluated (see (9)). The values of THroi versus SNR are stored
in the form of look-up table and are used when (23) and (24) are evaluated.

4.3. Measures of performance

The algorithm described in Section 2.2 was applied to the test signal f (x) to obtain the coefficient Λu(·). For a given
test signal f (x), all entries in the database are scanned through and then the indices of database whose matching score is
higher than THΛ

roi are listed as candidates.
Let us denote by R the set of all possible index pairs (i, u) such that

Λu( f , ti) � THΛ
roi (23)

and then take the set R as a set of candidates for the test signal f (x).
If there is more than one index that matches the criteria in (23) the results will be listed in descending order of

matching score. The higher the score, the more likely it is the correct index. However, if the number of candidates with
a high matching score is large, they cannot easily be identified only by listing in descending order of matching score. The
number of candidates will be increased rapidly by false positives as the SNR decreases. In this paper, the direct NCC is used
to filter out the unsuitable candidates from the set R and in particular such a filtering process can considerably reduce the
false positives caused by the approximation ((9) and (10)) used in deriving the coefficient Λu(·).

Let us denote by Ωu(·) the NCC coefficients that meet the following filtering process:

γu∈R( f , ti | i ∈ R) � THγ
roi. (24)

Note that the computational burden in obtaining the Ωu(·) entirely depends on the size of the set R (i.e., the signal to noise
ratio).

Some comparisons were made between the algorithms based on the three coefficients (γu(·),Λ(·) and Ωu(·)) with the
test signal f (x) and then the performance of each algorithm in terms of false positive/negative rate and identification rate
was evaluated. The false positive rate is the proportion of negative cases that were incorrectly classified as positive while



J.-C. Yoo et al. / Digital Signal Processing 20 (2010) 1482–1493 1489
Fig. 4. Comparison of average FN rate between the three coefficients. (a) FN rate versus SNR, averaged over scaling factor between 0.1–10. (b) FN rate versus
scaling factor, averaged over SNR between −3 dB–10 dB.

the false negative rate is the proportion of positive cases that were incorrectly identified as negative. The identification rate
is defined as the percentage of successful detections for all trials. Fig. 4 shows the average false negative (FN) rate while
Fig. 6 the average false positive (FP) rate. It can be seen that Λu(·) gives relatively better FN rate than γu(·). Generally, there
is a trade-off between the FN and FP rate. As shown in Figs. 4 and 6, the FN rate of Λu(·) is better than that of γu(·) while
the FP rate of Λu(·) is worse than that of γu(·). That is, we obtained a lower FN rate at the sacrifice of the FP rate and thus
the identification rate of Λu(·) is better than that by γu(·) (see Fig. 8). However, such a high FP rate of Λu(·) can be reduced
to as low as that of γu(·) by the filtering process given in (24). This is because the filtering process is done by γu(·). As a
result of the filtering process, the FP rate of Ωu(·) become almost the same as those of γu(·), as shown in Figs. 6 and 7(c).

That is, we can have the observations that the filtering process in (24) gives significant improvement in FP rate and
yields almost the same FP rate as in the direct NCC for all SNR conditions. Furthermore, even though we obtained a lower
FN rate than γu(·) at the sacrifice of the FP rate there was no significant difference in FP rate between Λu(·) and γu(·) for
high SNR (> 4 dB). This is because the number of FP itself decreases around high SNR regions. Fig. 8(a) shows a graph that
plot the average identification rate as a function of SNR. As shown in this figure, the identification results by Λu(·) is higher
than that by γu(·) while keeping almost the same FP rate as and less FN rate than in the direct NCC, especially when the
SNR is greater than about 4 dB. Also, it is seen from Figs. 5, 7 and 9 that the fast NCC is very stable to the scaling factor α.

The simulation results can be summarized as follows:

(1) The identification rate of the fast NCC is better than that of the direct NCC, especially when the signal to noise ratio
(SNR) is higher than 4 dB. Nevertheless, (i) there is no significant difference in FP rate between the fast NCC and
the direct NCC, (ii) since any multiplications are not used during the evaluation of the NCC, the computational cost
is significantly reduced in comparison with other traditional approaches, in particular when the function of NCC is
implemented by hardware, and (iii) the FN rate is lower than that in the direct NCC.

(2) For low SNR (< 4 dB), the filtering process given in (24) to suppress false positives is necessary and then the amount
of computation required for the process depends primarily on the SNR. This is because the size of the set R rapidly
increases as SNR decreases.

(3) The fast NCC can be used as a coarse identifier for rough locating a template when SNR is low.
(4) The fast NCC can be used as a fine identifier without using the filtering process when SNR is high.

These results clearly show the advantage of using the fast NCC algorithm.
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Fig. 5. Plots of FN rate versus SNR with various scaling factor α. (a) γu(·), (b) Λu(·), (c) Ωu(·).

Fig. 6. Comparison of average FP rate between the three coefficients. (a) FP rate versus SNR, averaged over scaling factor between 0.1–10. (b) FP rate versus
scaling factor, averaged over SNR between −3 dB–10 dB.
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Fig. 7. Plots of FP rate versus SNR as a function of scaling factor. (a) γu(·), (b) Λu(·), (c) Ωu(·).

Fig. 8. Comparison of average identification rate between the three coefficients. (a) Identification rate versus SNR, averaged over scaling factor between
0.1–10. (b) Identification rate versus scaling factor, averaged over SNR between −3 dB–10 dB.
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Fig. 9. Plots of identification rate versus SNR as a function of scaling factor. (a) γu(·), (b) Λu(·), (c) Ωu(·).

5. Conclusions

We have developed a novel template-matching algorithm for 1-D signal, called a fast NCC algorithm, which achieves a
significant computation reduction with no loss in identification performance and without increasing FP and FN. The fast
NCC is fast compared with the direct NCC and Lewis’ algorithm. This is because most of its calculations consist of only
additions, which make them computationally efficient. Our simulation results with 100,000 test signals show that the
proposed algorithm can achieve better performance in terms of FN and identification rate without a significant increase in
FP rate while keeping considerably less computational cost as compared to the conventional algorithms, especially when
the SNR is higher than 4 dB. In addition, it was seen that the fast NCC can be used as either a coarse identifier or a fine
identifier, depending on the SNR. We are confident that the fast NCC will be widely used for time-critical applications such
as object recognition in image and word spotting in speech.
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