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e have routinely witnessed a range of unusu-
al events in a network. Some of these net-
work-based anomalies are malicious and
become major threats to network security.

These threats have led to a steady need for development of
countermeasures. An intrusion detection system (IDS) identi-
fies malicious anomalies and helps protect a network. Thus,
such systems have become an indispensable component of
computer networks. Two requirements can summarize the
most desirable attributes of an IDS:
• Responsiveness — Real-time responsiveness is of supreme

concern in an IDS due to imminence of attacks. To achieve
this goal in real time, the runtime efficiency of an IDS must
be high.

• Effectiveness — An IDS must be able to detect a range of
anomalies with diverse structures and generate a maximum
of true positives and a minimum of false positives.
These two requirements are difficult to satisfy at the same

time. A very responsive IDS [1, 2] adopts a relatively simple
detection algorithm and suffices in a situation in which real-
time alerts are essential. However, such systems are not
known for their accuracy.1 In comparison, a highly effective
IDS [3–5] employs relatively complex algorithms that are
highly accurate and not subject to false alarms. This type of
system tends to take a lot of time before concluding that an
attack is underway. In certain situations this relatively slow
reaction keeps such a system from being a best choice.

Our goal in this article is to take significant steps toward a
system that satisfies both requirements of responsiveness and
effectiveness. Furthermore, we want to develop a method for

visual inspection of the process of monitoring network traffic.
In principle, network traffic contains a wealth of information
about normal and abnormal traffic behavior. The recognition
of anomalies in the time domain is difficult because they are
buried within the other traffic. We seek to transform the time
domain into a two-dimensional coordinate. This new coordi-
nate is designed to distinguish anomalies from the mass of
network-wide traffic. Lastly, the effectiveness of an IDS relies
on an optimum threshold. This threshold constitutes the
boundary between detection and false alarms. In general, a
globally accepted threshold value does not exist. Such a value
should be determined by a network operator and depends on
management policy. Our goal in this case is to help operators
select the best-fit threshold value.

Our work begins with the observation that entropy varies
abruptly when anomalies agitate the system [4, 6]. For
instance, the results of port scanning increase the entropy of
the destination port, and the infected host would observe a
decrease in the entropy of the source Internet Protocol (IP).
We find that entropy is a particularly effective metric for
determining normal or abnormal system status and distribu-
tion. The central question is how to effectively measure entro-
py by observing the exchange of packets between computer
networks. The energy exchange in thermodynamics is analo-
gous to packet dynamics in computer networks [7, 8].
Researchers have concluded that the effect of energy exchange
can be measured using entropy. We adapted the entropy com-
putation to the measurement of packet dynamics in a comput-
er network.

We believe that a necessary first step in this adaptation is
to understand the packet dynamics of network-wide traffic.
For instance, a denial of service (DoS) attack and flash
crowds cause destination hosts to concentrate the distribution
of traffic on the victim. Network scanning has a dispersed dis-
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Abstract
Network-based attacks are so devastating that they have become major threats to
network security. Early yet accurate warning of these attacks is critical for both
operators and end users. However, neither speed nor accuracy is easy to achieve
because both require effective extraction and interpretation of anomalous patterns
from overwhelmingly massive, noisy network traffic. The intrusion detection system
presented here is designed to assist in diagnosing and identifying network attacks.
This IDS is based on the notion of packet dynamics, rather than packet content, as
a way to cope with the increasing complexity of attacks. We employ a concept of
entropy to measure time-variant packet dynamics and, further, to extrapolate this
entropy to detect network attacks. The entropy of network traffic should vary
abruptly once the distinct patterns of packet dynamics embedded in attacks
appear. The proposed classifier is evaluated by comparing independent statistics
derived from five well-known attacks. Our classifier detects those five attacks with
high accuracy and does so in a timely manner.

Effective Discovery of Attacks Using 
Entropy of Packet Dynamics

1 Throughout the article, the term accuracy implies high true positives and
low false positives, unless specified.

HAN LAYOUT  9/8/09  12:48 PM  Page 4

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on October 5, 2009 at 01:41 from IEEE Xplore.  Restrictions apply. 



IEEE Network • September/October 2009 5

tribution for destination hosts and a bottleneck distribution
for destination services. This bottleneck distribution is concen-
trated on the vulnerable ports. Concentration and dispersion
are, respectively, two patterns of packet dynamics frequently
perceived in a DoS attack and network scanning. This under-
standing of packet dynamics is a valuable reference for
designing a smart classifier of our own.

We evaluated the proposed algorithm by using five well-
known attacks and comparing its results with those of three
other popular algorithms. Our results show that our algorithm
is the most effective at detection of the four algorithms and is
only 3 percent less efficient than the most efficient of the
other algorithms. Our objective in this article is not to deliver
a fully automatic anomaly diagnostic system. Instead, we seek
to demonstrate the utility of new primitives and techniques
that a future system could exploit to diagnose attacks.

Related Work
An anomaly-based (also called behavior-based) IDS compares
the observed activities of the system with its normal profile
and reports as intrusions any divergences from this normal
profile. Current approaches to intrusion detection fall into
two types, volume-based and feature-based. Volume-based
detection uses deviations in overall traffic volume (e.g., band-
width, the number of flows) to determine anomalies. This
approach detects attacks by identifying abrupt changes in traf-
fic volume and has been successful in isolating large changes
in traffic [1, 9].

A question has been raised, however, of whether traffic vol-
ume alone is sufficient to identify sophisticated low-rate
attacks and to distinguish innocent traffic of unusually large
volume from large volumes with malicious intent [4, 10, 11]. As
a complementary (not a substitute) metric for traffic volume, a
traffic feature-based IDS has been proposed. A feature is a
descriptive statistic that can be calculated from one or more
packets in traffic such as mean packet length or distribution of
IP addresses. It is critical for an IDS to select best-fit features
for protection purposes, but it also should minimize the num-
ber of features so as to perform effectively [10, 12].

Network anomalies would change the unique normal
behavior of a system. This change can be perceived by distri-
butional modifications of the parameters in either traffic vol-
ume or traffic features. Much research has been directed
toward developing a method to track changes in system condi-
tion so as to detect anomalies.

Time-series analyses detect anomalies in traffic volume by
exploiting temporal patterns in time-series traffic data. These
techniques model an underlying normal profile based on peri-
odic observations of traffic and signal an alarm if a current
observation deviates from the normal profile by a certain
threshold degree. The exponential weighted moving average
(EWMA) and Holt-Winters forecasting, examined in [1],
operate in real time, but are prone to be biased along with
outlying values. Signal processing techniques such as Fourier
transform and Wavelet analysis have been adapted to detect a
broad range of volume-based anomalies [2, 13]. This improve-
ment comes as the result of one extra transformation of time-
series data into a new coordinate that yields better visibility of
stealth attacks. However, this signal processing approach does
not depart from the time-series analysis in any radical way.

Entropy in information theory is an especially excellent tool
for measurement of the distributional change in system condi-
tion [14]. Entropy provides useful descriptions of the long-term
behavior of random processes. The key idea is that once
abnormal traffic contaminates long-term behavior, the entropy
value of the system should immediately reflect this contamina-

tion. The authors of [15] presented an entropy-based detection
method that mainly targets fast-scanning worms but can be
extended to other massive network events. This detection
method takes advantage of fluctuations in the entropy values
of flow-related metrics. Noteworthy research in [4] diagnoses
network-wide anomalies by separating network traffic into nor-
mal and anomalous components based on the entropy values
of traffic features. A coordinate transformation method, Prin-
cipal Component Analysis (PCA) [3], is used in the separation.
However, this approach operates in a postmortem fashion
because of its complex calculation of the traffic matrix [15]. In
[16] the authors also use entropy to summarize traffic feature
distributions with a goal of classifying and profiling traffic on
the backbone of the Internet. Another behavioral IDS was
developed in [5] that detects anomalies by comparing the cur-
rent network traffic against a baseline distribution. The maxi-
mum entropy [5, 17] technique provides a flexible approach for
estimating the baseline distribution, and relative entropy [16] is
used to compare the empirical distribution with the baseline
distribution so as to relate outcomes to an anomaly.

The authors of [7] provided a view of a network conversa-
tion exchange for a real-time monitoring system. Their algo-
rithm is similar to the proposed algorithm in its use of entropy
and in building a physical model to monitor packet exchanges.
Our work complements this earlier work by providing another
fully designed model to identify a variety of anomalous behav-
iors, including attacks.

The performance of previous methods of intrusion detec-
tion was greatly influenced by the parameter settings used to
model normal traffic. As a promising alternative, an unsuper-
vised method was explored; this unsupervised approach allevi-
ated the bias or the failure in training of normal traffic profile
by dispensing with such a baseline [9, 11].

Intrusion Detection Using Entropy
We deliberately modeled the entropy computation to the
measurement of packet dynamics in a computer network.
Well-known classic thermodynamics theory is used to gain an
understanding of packet dynamics and further detection of
nefarious incidents.

Thermodynamics Theory
Space in thermodynamics theory [18] consists of systems. Sys-
tems exchange energy constantly with neighboring systems
until they reach an overall state of space in equilibrium. A
sudden change of state because of abnormal events in the
space leads to an abrupt increase of its entropy. This abrupt
change of entropy in the face of an abnormal event is a cen-
tral idea in this article. If one can measure the entropy of
space, it is possible to diagnose abnormal and irregular events
even though these events are not immediately recognizable by
visual inspection.

We attempted to apply a thermodynamics model to a com-
puter network and to build our own model of the network.
Two obvious questions about this new model are how to
reflect the system and its surroundings on the computer net-
work, and how to measure entropy. The answers are later in
this section.

Designation of a System and its Surroundings using
Packet Dynamics
Determining the number of spaces in a model and dividing a
space into a system and its surroundings depends perhaps on
the design goals. This brings us to a design choice of signifi-
cant implications.
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We designated the IP address and the port number as the
two spaces in our computer network model. The IP address
space is meaningful for tracking the origin and destination of
attacks. We are interested in diagnosing an attack that origi-
nates from the Internet and has a victim in the protected net-
work as its destination. As shown in Fig. 1a, our model
determines that the inside network (i.e., the protected net-
work) is the system and the rest of the Internet is its sur-
roundings.

The Port space is helpful in determining the services target-
ed by attackers. If our interest was to find the exact service
being exploited, we would need 65,536 systems in the model
to monitor all 65,536 ports independently, a task that is
almost impossible to handle efficiently in the model. A better
design in this situation would be to group services into mean-
ingful categories according to our interest and purpose. We
used packet dynamics in applications as a basic metric for
dividing services into groups. As a result, we have chosen
three systems for the Port space: They are Interactive, Inter-
active Bulk, and Asynchronous, as shown in Fig. 1b. The first
service group, Interactive, includes applications in a client-
server model in which a single request packet generates a sin-
gle response packet. Telnet, Secure Shell (SSH), and
X-windows are typical applications in this group. Multiple
packets are generated as a response to a single request packet
in the Interactive Bulk service. Typical applications include
the File Transfer Protocol (FTP), Hypertext Transfer Protocol
(HTTP), and Simple Mail Transfer Protocol (SMTP). A mul-
timedia streaming service is appropriately included in this
group. The Asynchronous group is a bit different from the
previous two service groups because applications in this group

operate in the peer-to-peer (P2P) model. Popu-
lar P2P applications can be included in this ser-
vice group in which two peers exchange packets
asynchronously and bidirectionally. Ports asso-
ciated with all other services and ephemeral
ports make up the surroundings in the Port
space (Fig. 1b).

Detecting Attacks using Entropy
In a network-wide view of the model, the imbal-
ance of network loads causes numerous single-
link traffic data to flow continuously between
the system and its surroundings. The flow of
traffic distributes this imbalance throughout the
network. At a certain point, the overall loads
within the system and its surroundings reach a
point at which they are very nearly balanced.
This state is called dynamic equilibrium, and
reaching it changes the entropy of the space to
quite a low frequency. When an attack is sud-
denly introduced into the network, the load in
one system increases sharply, disrupting this
dynamic equilibrium. As a consequence, the
entropy of the space fluctuates, and we regard
the discontinuity of the entropy in time as a
clue to diagnosing illegitimate activities in the
network.

A certain number of tokens is assigned to
each system and its surroundings in the space.
The state vector (SV) and the state count (SC)
are two state variables used in the model to
record the number of tokens in each system
and its surroundings. The SV is a pair of the
number of tokens in the system and its sur-
roundings. The SC is a counter of the distinct
state vectors. Braces and brackets, respectively,

are used to represent the state vector and the group of state
counts available at any given time.

As a packet flows between a system and its surroundings,
one token from the source system is given to the destination
surroundings and vice versa. This movement of tokens updates
or creates the state vector and increases the corresponding
state count by one. Figure 2 illustrates management of the
state vector and calculation of the state count in the Port
space. Assume that three systems and one surrounding are
given 10 tokens, respectively, in the beginning. At this time,
the state vector and the corresponding state count should be
{10,10,10,10}sv and one. Five packets, A to E, flow in Fig. 2a.
Packet A moves from the Interactive group to the surround-
ings. Immediately after this movement, the state vector
changes to {9,10,10,11}sv and its corresponding state count is
one. Second packet B moves from the surroundings to the
Interactive group. The state vector is {10,10,10,10}sv again.
The state count for {10,10,10,10}sv is updated to two. The six
state vectors are summarized in Fig. 2b. In the end, there are
four distinct state vectors in the illustration. State counts of
{10,10,10,10}sv and {10,11,9,10}sv are two, and state counts of
{10,11,10,9}sv and {9,10,10,11}sv are one. The four state
counts corresponding to the four distinct state vectors are suc-
cinctly represented by [2,2,1,1]sc.

Equation 1 measures the entropy (et) in a given time (t). di
is the state count for i-th state vector. mt is the number of dis-
tinct state vectors in a given time. Equation 2 calculates pi,
which is a relative frequency of di in a given time.

(1)
e p pt ii

m
i

t= − =∑ log
1

� Figure 1. Designation of system(s) and its surroundings in a computer network.
Arrows indicate packet flows between (a) inside the network (system) and the
Internet (surroundings) in IP address space; (b) ports on three group services
(systems) and ephemeral ports (surroundings) in Port space.
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(2)

(3)

In the illustration shown in Fig. 2, [d1, d2, d3, d4]sc is [2, 2,
1, 1]sc and [p1, p2, p3, p4]sc is [1/3, 1/3, 1/6, 1/6]sc. The number
of distinct state vectors (mt) is four. Equation 3 shows the cal-
culation of the entropy in this space.

According to Eq. 1, the entropy increases when either
the number of distinct state vectors (mt) increases or the
variance of the state count (V[di]) decreases. Concentration
and dispersion patterns in the packet dynamics should
increase mt and decrease V[di]; that is, the number of pack-
ets flowing one way is relatively far greater than the num-
ber flowing the other way. This one-way packet movement
would create a number of distinct state vectors with the
same number of state counts. As a consequence, the num-
bers of distinct state vectors increases, but the variance of
the state count decreases. Bogus requests do not generate
immediate responses in general because of silent targets
and blockages at the firewall. When a large number of
bogus packets flow in the same direction in the network,
the packet dynamics in this situation are quite similar to
one-way packet movement and as a result, entropy should
also increase.

When a large volume of packets flow in the network as a
result of network instability or unintentional applications, this
rather random packet dynamic does not make a discernible
change in either V[di] or mt but only increases the average of
di. In this case, entropy does not increase. Furthermore,
because it has minimal influence, a failure in individual link
traffic does not change the entropy.

Accuracy Validation Using an Entropy Graph
We implemented the proposed algorithm using Perl and ran it
on real traffic traces available on the Internet. We used four
traces containing five malicious attacks: they are the Code
Red Worm, Witty Worm, Slammer Worm, DoS, and dis-
tributed DoS (DDoS) attacks. Table 1 summarizes these four
traces and five attacks.

A desirable feature of a trace used to evaluate a given
IDS is that the attacks that trace contains cannot be dis-
cerned by visual inspection because the attacks are buried
within regular traffic. The MIT Defense Advanced Research

Projects Agency (DARPA) trace is such trace. However, the
other three traces contain only worms. Our solution was to
create three new traces by combining individual worms with
regular traffic after meshing the content of the traces. These
new traces contain regular traffic volumes about three times
larger than the worm attacks in terms of bandwidth and
number of packets.

In a given period of one second, we measured the state vec-
tors and the state counts in the IP address and Port space. We
calculated the two entropy values for the two spaces at the
end of the period and plotted these two entropy values as a
pair as shown in Fig. 3. This figure is called the entropy coor-
dinate graph, shortened to entropy graph. The x-axis and the
y-axis in Fig. 3 are the entropy values, respectively, of the IP
address space and the Port space. Figure 3 shows five entropy
graphs. Each entropy graph contains 40 points in total, 20
consecutive points each from the normal and abnormal peri-
ods.

In the first two graphs related to the DoS attacks, the
entropy values from both spaces increase linearly as soon as
the abnormal traffic is introduced into the network. The cen-
ter points move, respectively, from (3.2, 1.8) to (11.4, 10.9) in
the DDoS attack and from (2.2, 2.3) to (5.4, 5.5) in the DoS
attack. The rationale behind this abrupt increase in entropy is
as follows: DDoS attacks accompany a large number of
incoming packets from various sources of IP addresses. These
incoming packets are destined for a few vulnerable service
ports on a targeted IP address. This concentration of packets
would increase the numbers of distinct state vectors in the IP
address space as well as in the Port space, and the entropy
increases similarly.

Figures 3c through 3e show, respectively, the entropy
graphs for Witty Worm, Code Red Worm, and Slammer
Worm. The distances between the center points in the three
worms are, respectively, 1.7, 1.4, and 1.3. The entropy
increases because of the dispersion of packets in the IP
address space (i.e., from attacker to target) and the concen-
tration of packets in the Port space (toward vulnerable ser-
vice ports).

The center points in Figs. 3a and 3b move in about a 45˚
line. The 45˚ movement implies that the IP and Port spaces
contribute equally to increasing the entropy. The angles of the
center points’ movement in Figs. 3d and 3e are less than 45˚,
implying that the IP address space has more control over the
entropy. The reason for this inequality is that vulnerable ser-
vice ports (i.e., 80 for Code Red and 1434 for Slammer) are
well-known, and these services belong to Interactive Bulk. We
found a large volume of traffic associated with these two port
numbers in the normal traffic. Unique patterns of packet
dynamics in normal and abnormal traffic cancel each other on
these ports.
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� Figure 2. Illustration: a) An arrow indicates a packet flow. Five packets, A through E, flow in the Port space. Packet E is self-returning.
b) Six state vectors, the corresponding state counts, and a calculation of the state count.
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Performance Evaluation Using a Receiver
Operating Characteristic Curve
The proposed scheme is described only for the IP address
space. Extension to the Port space should be straightforward.

Algorithm and Metrics
The proposed scheme calculates an entropy value for the IP
address space in a given time. An additional state variable
records recent k entropy values. Let us denote et(k) as repre-
sentative of the recent k entropy values after calculation of
the n-th entropy value. If the difference between et(k) – et–1(k)
is greater than the given threshold T, then the proposed
scheme is supposed to trigger an alarm, thus signaling a possi-
ble attack. The key question to be solved is how to select the
representative values of k and T in a manner that is appropri-
ate for an effective and responsive classifier. At least three
existing solutions were considered as means to provide the
best selection of a representative value: a moving average, a
moving median, and a statistical hypothesis test such as a stu-
dent’s t-test. A hypothesis test was excluded because of the
relatively high computational cost. We chose the moving
median because the median is more immune than a mean
value to fluctuating noise. In this way the proposed scheme is
quite deliberate in its capability to report real signs of intru-
sion and to reject false alarms.

In the following discussion we use the k value of 1 for the
proposed scheme unless specified. The effects of k on effec-
tiveness and responsiveness, and T values on the system will
be discussed later in this section.

Receiver Operating Characteristic Curve
Based on the base-rate fallacy [19], a true positive alone is
insufficient for a discussion of accuracy. The following exam-
ple illustrates why in evaluating accuracy one must consider
both true positives (TPs) and false positives (FPs), and bal-
ance these two extremes. Assume there are 70 positive

instances out of 100 instances. Alice’s classifier is
so liberal that it predicts all instances will be pos-
itive. The true positive rate (TPR) is calculated
as 1 (70/70). If we consider only the TPR, her
classifier is 100 percent accurate. However, her
classifier has predicted as positive 30 instances
that are actually negative; these are FPs. The
false positive rate (FPR) can compensate for this
fallacy. The FPR is calculated as 1 (30/30), mean-
ing that the algorithm is 100 percent inaccurate.

A receiver operating characteristic (ROC)
curve is a graphical plot concerning the balance
of the TPR versus the FPR because threshold
values vary [20]. ROC space is a two-dimensional

unit [0,1] in which the TPR is plotted on the y-axis and the
FPR is plotted on the x-axis. One point in the ROC curve is
drawn from a paired TPR and FPR with one threshold value.
Multiple points can be calculated by varying threshold values.
These points make up a concave curve, namely the ROC
curve.

For a meaningful comparison, it is necessary to normalize
the thresholds used in different classifiers so that they have
the same absolute value. The ROC makes it meaningful to
compare classifiers by modulating to 1 a distance between the
upper and lower limits of thresholds. By doing so, the lower
limit of threshold is located at (1,1) in the ROC space, and
the upper limit is located at (0,0). ROC curves from different
classifiers may have a different number of points on the curve.
However, all ROC curves must start at (1,1) and end at (0,0).
As the threshold increases from the lower to the upper limits,
a decision rule tends to change from liberal to conservative.

A number of popular classifiers, including ours, use a
threshold to predict an instance as positive or negative. Find-
ing an optimum threshold operating point poses a challenge
because the threshold value can influence the accuracy of
classifiers. However, in this article we do not suggest an opti-
mum threshold for the proposed algorithm because this value
is absolutely a designer’s choice, and a system administrator
should decide the threshold empirically based on administra-
tive policy. We suggest only how a designer or system admin-
istrator can find an optimum threshold operating point on the
ROC curve. Points that represent the optimum thresholds
may lie on the upper concave hull of the ROC curve near
(0,1). This is because the point at (0,1) implies perfect classifi-
cation. It is acceptable to choose a point closest to (0,1) for
the optimum threshold. Choosing that point could also maxi-
mize the difference between the TPR and the FPR.

Comparison of Effectiveness
Figure 4 displays an evaluation of the accuracy of the pro-
posed scheme under five attack scenarios. Three well-known
systems were selected for use in comparing accuracy: PCA [3],
EWMA, and Holt-Winters. Each figure shows four ROC
curves for the four detection systems.

An accurate classifier tends to draw the ROC curve toward
the upper left corner in the ROC space. The broader an inte-
gral area of the ROC curve is drawn, the more accurate a cor-
responding algorithm is. Let us denote the integral area of the
ROC curve as the area under curve (AUC). Table 2 shows
the AUCs of the four IDS with respect to the five attacks.

Figures 4a and 4b, respectively, show the ROC curves of
the DoS and DDoS attacks. The AUC of proposed algorithm
in the DoS attack is 0.85. This is approximately 10 percent
greater than the AUC of PCA. In the DDoS attack, our pro-
posed algorithm has a 0.97 AUC, and Holt-Winters has an
AUC value of less than 0.85. It is interesting to note the cir-
cled area (A) in Fig. 4a, where the ROC curve is rather flat.

� Table 1. Five attacks in four traces. These attacks are used to evaluate perfor-
mance of the proposed algorithm and the other three algorithms.

Data sets Attacks Period Data volume Year collected

SONY MAWI Slammer 7m 66 MB 2003

CAIDA Witty 9m 100 MB 2001

NLANR Code Red 9m 96 MB 2001

MIT DARPA DoS 23h 50m 382 MB 1998–1999

MIT DARPA DDoS 2h 14m 117 MB 2000

� Table 2. AUC value of four classifiers for five attacks.

EWMA Holt-Winters Proposed PCA

DoS 0.76 0.78 0.85 0.78

DDoS 0.83 0.85 0.97 0.96

Witty Worm 0.69 0.77 0.98 0.78

Slammer Worm 0.68 0.73 0.87 0.73

Code Red Worm 0.66 0.64 0.78 0.76
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� Figure 3. Five entropy graphs for five attacks. An arrow in the graph indicates the movement of a center point. The two values in the
lower right corner of the graphs are, respectively, the distance and the angle of the center points’ movement. a) Denial of service; b) dis-
tributed denial of service; c) Witty Worm; d) Code Red Worm; e) Slammer Worm.
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� Figure 4. Five ROC spaces for five attacks. ROC curves of four classifiers are drawn in each ROC space; points on the diagonal line in
the ROC space are based on a random decision. a) Denial of service; b) distributed denial of service; c) Witty Worm; d) Slammer
Worm; e) Code Red Worm.
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As the curve moves from right to left, the threshold value
increases, simply meaning that the decision rule becomes
more conservative. In general, as the rule becomes more con-
servative, both the TPR and the FPR tend to decrease. How-
ever, the TPR remains the same in this case, whereas the FPR
decreases from 0.35 to 0.24. This is because changes in the
threshold value are not large enough to change the TPR. If
this flat curve appears between two points that are candidates
for the optimum threshold, one should pick the point closest
to the left.

Figures 4c and 4d, respectively, show the ROC curves of
the Witty Worm and Slammer Worm. The AUC values of our
algorithm in these attacks are 0.98 and 0.87, respectively.
However, the rest of the classifiers have AUC values of less
than 0.8. Figure 4e shows the ROC curve of the Code Red
Worm. The AUC of the proposed algorithm is slightly greater
than the one for PCA. The circled area (B) in Fig. 4e indi-
cates that in the range between the 0.63 TPR and the 0.85
TPR, PCA performs better than the proposed algorithm.

We also measured the degree to which, if any, different k
values affected the effectiveness of a classifier. We concluded
that classifier effectiveness bore little relationship to the num-
ber of recent k values. We reached this conclusion because
the greater the number of recent k values included, the less
inclined the classifier was to raise an alarm. By reacting this
way, the classifier can simultaneously lower its FPR by reject-
ing many false positives and its TPR by being reluctant to
accept true positives. The outcome from these two rates of
lowering FPR and TPR is difficult to predict, and determina-
tion of a trend in the k value is similarly elusive.

Comparison of Responsiveness
In order to compare responsiveness, we measured an average
of the reporting latencies in which the reporting latency is the
time difference between the onset of an attack and the onset
of detection. Figure 5a shows the reporting latency for four
different k values. We set the TPR for the x-axis with the
same rationale as in the ROC curve. An interesting observa-
tion in Fig. 5a is that it takes longer to raise alarms as the k
value increases and the TPR decreases. This is because a con-
servative IDS takes longer to raise an alarm, and an IDS

tends to be more conservative as the k value increases and the
TPR decreases. Figure 5b compares the reporting latencies of
the four detection systems with respect to the TPR. EWMA is
the most agile in signaling alarms. PCA takes slightly longer
than 35 percent of the response time required by the pro-
posed algorithm at a TPR of 0.9. According to Fig. 5b, our
proposed classifier takes on average about 3 percent longer to
respond than EWMA, confirming that the two algorithms are
comparable in terms of responsiveness.

Conclusion
Detecting network anomalies is an ill defined problem, and
most systems available for their detection do not combine
effectiveness and responsiveness. They tend to do well in one
or the other quality, but not both. We initiated our research
in an effort to determine where a detection system could be
designed that would satisfy both qualities at the same time.
The basic idea is that anomalous traffic is different from
benign traffic in a way that can be distinguished by patterns in
packet dynamics. To detect malicious attacks, we measured
time-variant entropy values in packet dynamics by adapting
thermodynamics theory. The experimental results demonstrat-
ed that even with small rates of anomalous traffic, our intelli-
gent classifier significantly improved the accuracy of intrusion
detection. As a tutorial, this article provides a comprehensive
survey and discussion of anomaly-based detection of a net-
work attack. This article also serves as a tutorial introduction
to ROC graphs and as a practical guide for using them in
research. Future work will include an analysis using a variety
of the attacks available today. Furthermore, it is interesting to
see how the proposed algorithm performs in comparison with
commercialized products used in real networks.
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